Skip to main content

Webb and Hubble snap the same object for two views of one galaxy

Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail. ESA/Webb, NASA & CSA, A. Leroy

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it’s easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn’t a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Featured in this new NASA/ESA Hubble Space Telescope Picture of the Week is the spiral galaxy NGC 2090, located in the constellation Columba.
Featured in this new NASA/ESA Hubble Space Telescope Picture of the Week is the spiral galaxy NGC 2090, located in the constellation Columba. ESA/Hubble & NASA, D. Thilker

This image, taken by Hubble, shows the view of the same galaxy as seen in the optical or visible light portion of the spectrum, which is the same as what our eyes can see. In this version, the spiral arms are less visible, but you can more clearly see the patchy areas of dust that make up the disc of the galaxy.

Recommended Videos

This galaxy is a busy one, with star formations still occurring and stars of many different ages found throughout the center and disc. This diversity of stars is useful for scientists, who can use galaxies like this one to observe the evolution of stars by seeing them at different ages. This galaxy was chosen for Webb to study as part of a project about stellar evolution that looks at nearby galaxies still in the process of forming stars.

The image from Hubble was taken as part of research into star formation as well, and was also used by a project called the Extragalactic Distance Scale Key Project to study a type of star called Cepheid variable stars, which are important in understanding the expansion rate of the universe.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
Citizen scientists spot mysterious object shooting out of the galaxy at 1 million mph
This artist's concept shows a hypothetical white dwarf, left, that has exploded as a supernova. The object at right is CWISE J1249, a star or brown dwarf ejected from this system as a result of the explosion. This scenario is one explanation for where CWISE J1249 came from.

Citizen scientists have helped to identify an incredibly fast-moving object in space, which is traveling at such a speed that it will shoot out of the Milky Way and head out into intergalactic space.

Amateur astronomers working on the Backyard Worlds: Planet 9 project spotted the object, which was also observed by the recently-retired NASA NEOWISE telescope. The trio of citizen scientists -- Martin Kabatnik, Thomas P. Bickle, and Dan Caselden -- spotted the object named CWISE J124909.08+362116.0 several years ago, and now it has been confirmed they are co-authors on a paper about its discovery.

Read more