Skip to main content

James Webb sees evidence of an ocean-covered ‘Hycean’ exoplanet

The James Webb Space Telescope has once again peered into the atmosphere of an exoplanet, and this time it has identified indications that the planet could be covered in oceans. The planet K2-18 b is just 120 light-years away from Earth in the constellation of Leo and is a type of planet called a sub-Neptune which is unlike any planet in our solar system.

Researchers used Webb to investigate K2-18 b, which is more than eight times the mass of Earth and orbits a small, cool dwarf star. It is located within the habitable zone of the star, where it is possible for water to exist on the planet’s surface, and the data suggests that this could be an ocean world.

This illustration shows what exoplanet K2-18 b could look like based on science data. K2-18 b, an exoplanet 8.6 times as massive as Earth, orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light years from Earth.
This illustration shows what exoplanet K2-18 b could look like based on science data. K2-18 b, an exoplanet 8.6 times as massive as Earth, orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light years from Earth. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI); Science: Nikku Madhusudhan (IoA)

The researchers used Webb’s NIRSpec instrument, which can break down light into different wavelengths to see which ones have been absorbed by the target. As different compounds absorb different wavelengths of light, by looking at the missing wavelengths scientists can tell what an object is likely composed of. In this case, the planet showed indications of methane and carbon dioxide, and is thought to have a hydrogen-rich atmosphere with water oceans covering its surface.

Recommended Videos

Though the planet is in the habitable zone and does seem to have water, that doesn’t necessarily mean that life could survive there. Factors like the temperature of the oceans or the amount of radiation from the star can all affect habitability. However, the fact that data indicate a liquid water ocean does suggest the plant could be a hypothetical type of planet called a Hycean planet, which could be a good place to look for life.

Please enable Javascript to view this content

“Our findings underscore the importance of considering diverse habitable environments in the search for life elsewhere,” said lead author of the research, Nikku Madhusudhan of the University of Cambridge, in a statement. “Traditionally, the search for life on exoplanets has focused primarily on smaller rocky planets, but the larger Hycean worlds are significantly more conducive to atmospheric observations.”

It’s also notable that the exoplanet is a sub-Neptune, as even though we don’t have a planet like this nearby to study, this is thought to be one of the most common planet types in the wider galaxy. The researchers plan to observe this particular planet with another Webb instrument, MIRI, for more information, and other teams will use Webb for further research into potentially habitable exoplanets as well.

“These results are the product of just two observations of K2-18 b, with many more on the way,” said researcher Savvas Constantinou of the University of Cambridge. “This means our work here is but an early demonstration of what Webb can observe in habitable-zone exoplanets.”

The research has been accepted for publication in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
There’s a tiny exoplanet orbiting our neighbor, known as Barnard’s star
Artist’s impression of a sub-Earth-mass planet orbiting Barnard’s star

In our local cosmic neighborhood, the nearest star is Proxima Centauri, which is part of the three-star Alpha Centauri system and known to host exoplanets of its own. But just a little further away is a single star on its own, known as Barnard's star. Recently, astronomers discovered that this star also hosts at least one exoplanet, and could host as many as four.

At just six light-years from Earth, Barnard's star is close by and has long been of interest to researchers searching for nearby exoplanets. But as a small, dim type of star called a red dwarf, no one has discovered an exoplanet here before -- though there were hints found in 2018 that such a planet might exist.

Read more
See the wonders of the Milky Way in this new infrared map
The Lobster Nebula seen with ESO’s VISTA telescope.

The wonders of our galaxy are on full display in a new infrared map of the Milky Way, showing a stunning 1.5 billion objects using data collected over 13 years. Researchers used the European Southern Observatory (ESO)’s VISTA telescope to collect 500 terabytes of data, showing the nebulae, globular clusters, stars, planets, brown dwarfs, and other objects that make up our galaxy.

The VISTA telescope (Visible and Infrared Survey Telescope for Astronomy), located on the Paranal Observatory in Chile, has an infrared instrument called VIRCAM that is able to look through clouds of dust and gas to observe objects that would be invisible in the visible light wavelength. Since 2010, researchers have been using this instrument to observe the Milky Way. They observed each patch of the sky multiple times, so they could see not only the location of particular objects but also how they were moving over time.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more