Although the James Webb Space Telescope was built primarily for looking back at the earliest and most distant galaxies, it can also be used for a host of other scientific observations — including looking at targets right here in our own solar system. Webb will perform a major study of Jupiter and has already imaged Neptune. Now, Webb has been used to get a fascinating look at our planetary neighbor, Mars.
It’s actually pretty difficult for Webb to study Mars because it is so close, and therefore very bright in both the visible light portion of the spectrum and in the infrared wavelengths at which Webb observes. The brightness can oversaturate the detectors which are designed to pick up very faint light sources. But Webb’s NIRCam camera was able to capture the martian surface, with two images captured at different wavelengths shown below.
The shorter wavelength image, shown at the top, is similar to a visible light image and shows features like craters and basins. The longer wavelength image, shown below, shows how the planet is radiating heat. The brightest spot is where the sun is directly overhead, with cooler regions toward the poles. The Hellas Basin also appears darker, though this isn’t because of temperature effects but rather due to the effects of altitude and air pressure.
Webb was also able to capture Mars using its spectrometry instruments. These can split light into different wavelengths to see the composition of an object — in this case, looking at the composition of the martian atmosphere as a whole. There are clear indications of carbon dioxide, water, and carbon monoxide, and what is impressive about this is how well the data fits the model of what we already know about Mars’s atmosphere. This shows just how effective Webb’s instruments are for this kind of spectrometry work — and how effective Webb has the potential to be when looking into the atmospheres of exoplanets.
The research using this Webb data is still being worked on and has not yet been published or peer-reviewed, so it shouldn’t be taken as definitive. But it goes to show just how versatile a tool Webb can be, with more Webb data on Mars still to come.