Skip to main content

James Webb captures a stunning colliding pair of galaxies

A recently released image from the James Webb Space Telescope shows the stunning galaxies IC 1623 A and B, located 270 million light-years away, which are in the process of merging. As the two galaxies crash together, they are intersecting and feeding high levels of star formation, creating an area known as a starburst region.

James Webb captured the image using three of its instruments: MIRI, NIRSpec, and NIRCam. Each instrument looked in a different portion of the infrared to see the different features of the merging galaxy. “This interacting galaxy system is particularly bright at infrared wavelengths, making it a perfect proving ground for Webb’s ability to study luminous galaxies,” Webb scientists write.

This image from the NASA/ESA/CSA James Webb Space Telescope depicts IC 1623, an entwined pair of interacting galaxies which lies around 270 million light-years from Earth in the constellation Cetus. The two galaxies in IC 1623 are plunging headlong into one another in a process known as a galaxy merger. Their collision has ignited a frenzied spate of star formation known as a starburst, creating new stars at a rate more than twenty times that of the Milky Way galaxy.
This image from the NASA/ESA/CSA James Webb Space Telescope depicts IC 1623 is an entwined pair of interacting galaxies which lies around 270 million light-years from Earth in the constellation Cetus. ESA/Webb, NASA & CSA, L. Armus & A. Evans Acknowledgement: R. Colombari

The rapid formation of stars occurs as tidal forces from the gravity of the two galaxies tug at clouds of dust and gas, spurring the birth of new stars. It is also thought that as the two galaxies merge, they may be forming a new supermassive black hole.

This image from the NASA/ESA Hubble Space Telescope depicts IC 1623. It combines data from Hubble’s ACS and WFC3 instruments, gives a familiar visible-light view of these colliding galaxies, where the centres of the individual galaxies are more obscured by dark dust.
This image from the NASA/ESA Hubble Space Telescope also depicts IC 1623. ESA/Hubble & NASA, R. Chandar

The same merging pair of galaxies were previously imaged using the Hubble Space Telescope’s Advanced Camera for Surveys and Wide Field Camera 3 instruments. Taken in the visible light range, this image shows the equivalent of what the human eye would see when looking at the galaxies. The galaxies are darker, particularly in the center, as parts of the image are obscured by dust. By comparing this image to the Webb image above, you can see how Webb’s infrared instruments can peer through the dust to see the structure beneath.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more