Skip to main content

One of James Webb’s 17 instrument modes isn’t working

While the James Webb Space Telescope has been both a huge popular success and a highly effective research tool so far, not everything is perfect with the new observatory. This week, NASA announced that one of Webb’s 17 observing modes is not functioning due to a hardware issue that is currently under review.

Webb has four instruments, all of which operate in the infrared portion of the spectrum. Three of the instruments — NIRCam, NIRSpec, and NIRISS — operate in the near-infrared and are working as intended, but there is an issue with the fourth instrument, MIRI, which operates in the mid-infrared.

Recommended Videos

Each of the instruments can operate in different modes, such as switching between imaging and spectroscopy. There are seventeen of these modes in total, and it is one of MIRI’s modes that is not functioning.

Please enable Javascript to view this content

While Webb’s other instruments are useful for cosmology research such as looking back at the earliest galaxies, MIRI, or the Mid-Infrared Instrument, is particularly useful for studying how stars and planets form. Its four modes include an imaging mode for taking pictures of dust and gas throughout galaxies, like a recent image taken of the galaxy Messier 74, and a coronagraphic mode in which light from bright stars can be blocked out to observe the exoplanets which orbit them. It also has two spectroscopy modes, and it is one of these which is not working.

“On August 24, a mechanism that supports one of these modes, known as medium-resolution spectroscopy (MRS), exhibited what appears to be increased friction during setup for a science observation,” NASA wrote in an update. “This mechanism is a grating wheel that allows scientists to select between short, medium, and longer wavelengths when making observations using the MRS mode.”

For now, scientists will not be using the MIRI medium-resolution spectroscopy mode while the issue is investigated. NASA says that an anomaly review board will be deciding on how to move forward and that teams are working on ways that the mode could be brought back into a working state. MIRI’s other three modes are still working fine, so the issue is contained to just the one mode.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more