Skip to main content

James Webb captures an extremely distant triple-lensed supernova

Since the start of science operations of the James Webb Space Telescope in July last year, we’ve been treated to a flood of images showing space targets from nebulae to deep fields. This month, Webb researchers shared a new image captured by the telescope’s NIRCam instrument which shows a both gorgeous field of galaxies and an important astronomical phenomenon called gravitational lensing.

The image features a huge galaxy cluster called RX J2129, located 3.2 billion light-years away, which is acting as a magnifying glass and bending light coming from more distant galaxies behind it. That’s what is causing the stretched-out shape of some of the galaxies toward the top right of the image.

The massive galaxy cluster RX J2129.
This observation from the NASA/ESA/CSA James Webb Space Telescope features the massive galaxy cluster RX J2129. Gravitational lensing occurs when a massive celestial body causes a sufficient curvature of spacetime to bend the path of light traveling past or through it, almost like a vast lens. In this case, the lens is the galaxy cluster RX J2129, located around 3.2 billion light-years from Earth in the constellation Aquarius. ESA/Webb, NASA & CSA, P. Kelly

One of the galaxies being lensed is particularly notable because it contains something special. Toward the top right, the same galaxy is imaged three times, due to the lensing effect. Within this triple-lensed galaxy is an exceptionally bright event, a Type Ia supernova. These occur when a small but dense star called a white dwarf is part of a binary system with another star and pulls material away from its companion. This continues until there is too much mass in the white dwarf and it collapses, then it explodes in a hugely bright flash of light.

Recommended Videos

The light from these Type Ia supernovae is important for two reasons: firstly, it is so bright that it can be seen even from another galaxy, and secondly, it is (usually) of a consistent luminosity. That means that astronomers can look at a very distant Type Ia supernova and accurately work out how far away it is, which makes it useful for measuring cosmological distances. These objects are called “standard candles.”

Please enable Javascript to view this content

This image captures an extremely distant Type Ia supernova, and that is useful to tell researchers how strong the gravitational lensing effect must be. To confirm their results, researchers also collected data using another of Webb’s instruments, its NIRSpec spectrogram, to measure the composition of the supernova.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more