Skip to main content

Zip through space to the stunning Southern Ring Nebula

NASA recently revealed the first high-resolution, color images from the most powerful space observatory ever built, the James Webb Space Telescope. And, peering into deep space farther than ever before, they didn’t disappoint.

A week on from that highly anticipated unveiling, the Canadian Space Agency (CSA), which along with the European Space Agency (ESA) is also part of the Webb telescope team, has posted a stunning video (below) that uses some video magic and Webb imagery to zip through space, taking us all the way to the Southern Ring Nebula, which is located 2,000 light-years from Earth.

Recommended Videos

WOW! 🤩 This video zooms through space to reveal @nasawebb’s image of the Southern Ring Nebula, 2000 light-years from Earth. Canada’s Fine Guidance Sensor allowed the telescope to point at and focus on its target.

Credit: NASA, ESA, CSA, STScI, and the Webb ERO Production Team pic.twitter.com/my5vbAjD80

— Canadian Space Agency (@csa_asc) July 21, 2022

Please enable Javascript to view this content

The Southern Ring Nebula (below), is a thing of stunning beauty, its appearance the result of a dying star throwing off layers of dust and gas.

Two stars, which are locked in a tight orbit, shape the local landscape. Webb's infrared images feature new details in this complex system. The stars – and their layers of light – are prominent in the image from Webb’s Near-Infrared Camera (NIRCam) on the left, while the image from Webb’s Mid-Infrared Instrument (MIRI) on the right shows for the first time that the second star is surrounded by dust. The brighter star is in an earlier stage of its stellar evolution and will probably eject its own planetary nebula in the future.
The Webb telescope has revealed details of the Southern Ring planetary nebula that were previously hidden from astronomers. Planetary nebulae are the shells of gas and dust ejected from dying stars. Webb’s powerful infrared view brings this nebula’s second star (right image) into full view, along with exceptional structures created as the stars shape the gas and dust around them. New details like these, from the late stages of a star’s life, will help us better understand how stars evolve and transform their environments. These images also reveal a cache of distant galaxies in the background. Most of the multi-colored points of light seen here are galaxies – not stars. NASA, ESA, CSA, and STScI

CSA’s Fine Guidance Sensor (FGS), which is part of the Webb observatory setup, is enabling the telescope to point toward and focus on its numerous targets.

“To make the most out of the Webb Telescope’s incredible capabilities, it was vital to design and build the most precise guidance sensor on any space telescope to date” CSA says on its website.

It explains that to enable Webb to bring targeted celestial bodies within its sights, the FGS sends relevant data to the observatory’s Attitude Control Subsystem, which uses the information to point the telescope toward the object of interest.

“To ensure Webb stays locked on its target, the FGS measures the exact position of a guide star in its field of view and sends adjustments to the telescope’s optical system 16 times a second,” CSA said.

The FGS is phenomenally accurate. Indeed, CSA says that the sensor is so sensitive that it can detect “a tiny angular displacement equivalent to the thickness of a human hair as seen from one kilometer away.” To give that some context, “that’s like spotting someone blink in Toronto, all the way from Montreal.”

The James Webb Space Telescope is now operating around a million miles from Earth. The $10 billion mission, which has been years in the making, is aiming to discover more about the origins of the universe while at the same time searching for distant planets that may support life. With its mission only really beginning in earnest in recent weeks, there is much to look forward to as the telescope is expected to make a slew of groundbreaking discoveries over the coming years.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more