Skip to main content

How NASA is building a new breed of spacesuit for the first expedition to Mars

In humanity’s quest to explore Mars, getting there is only half of the battle. To keep astronauts safe while they explore the planet, we’ll need sophisticated habitats, life support systems, and communications. We’ll also need a new type of spacesuit.

Recommended Videos

To understand the challenges of building a suit that can withstand the Martian environment and to learn what steps engineers are already taking to address these challenges, we spoke to two NASA engineers about what it takes to make such a spacesuit.

Parts of a spacesuit

Designing a spacesuit is no easy feat, explained Kristine Davis, a spacesuit engineer at NASA’s Johnson Space Center who works on the pressure garment systems team for NASA’s latest spacesuit design, the xEMU or Exploration Extravehicular Mobility Unit.

Artemis NASA suit
Kristine Davis NASA

A modern spacesuit consists of a number of components: There is the pressure garment system or PGS, the part a person actually wears including the helmet, and then the portable life support system, which is the backpack of the suit and provides breathable air and other essentials for performing spacewalks. There’s also a team that works on parts like lights and cameras and other auxiliary systems for the suit.

Of course, astronauts come in varying shapes and sizes, so a suit can’t be one-size-fits-all. “Our suits are modular, so we can mix and match components. So we have small, medium, and large parts that we can put together to fit a person,” Davis said. “We can fit a really large range of people. With the xEMU we really put a focus on fitting the smaller range of our crew sizes, so we can deliver a suit that fits the smaller range of the population, both male and female.”

NASA Introduces New Spacesuits for the Moon and Mars

One reason for the focus on smaller sizes is the increasing number of female astronauts working on NASA projects. The suits aren’t actually separated by gender, however. “Our suits aren’t gendered, so we have one suit for both males and females,” David said. “Because the suits aren’t conformal, they don’t need to be changed for body shapes in the way that clothing is.” Instead, suits are fitted to an anthropometric range, which refers to measurements such as arm length or chest diameter.

Challenges of the Martian environment

Mars is an inhospitable planet (though some scientists hope to change that), with temperatures on the surface ranging anywhere from minus 140 degrees Celcius (minus 284 Fahrenheit) to 30 degrees C (86 degrees F) — and dust storms, radiation, and a thin, carbon dioxide-rich atmosphere to contend with. All of that makes spacesuits a protective necessity and requires them to be tough enough to withstand all of those factors while still allowing their wearers to move around, using their fingers and hands, and walk comfortably.

Compared to designing for the moon, “We have more of a radiation environment on the Martian surface, not only higher energy radiation but also ultraviolet radiation,” Davis said. “For long-duration missions, we need to make sure that the materials can stand up to that environment.”

Mars Curiosity
View of Martian Dune as seen by Curiosity Rover. Image used with permission by copyright holder

There are also challenges with the atmosphere. Mars once had a thick atmosphere; it’s thin today, but still thicker than the absence of atmosphere on the moon or in space. So systems like the portable life support backpack can work on both the moon and the International Space Station (ISS), but will need to be changed for Mars.

In addition, there’s the problem of dust, which wreaks havoc on electronics and rovers during lunar missions by sticking to everything and causing degradation. The dust on the moon “is like tiny shards of glass,” Davis said, due to the fact there is no atmosphere and no wind on the moon, so there is no friction to wear down the dust’s sharp edges. That means it has to be kept out of bearings and components as it can eat through spacesuit fabric.

On Mars, “dust is still an issue,” Davis says. “But it’s a different kind of an issue. You have more erosion from the wind and storms, so the dust isn’t quite as sharp as on the moon. But it is dangerous in its own way. The dust has perchlorates in it, and because of the high carbon dioxide atmosphere on Mars, those are very dangerous if you inhale them and can cause cancer. Our dust control will have to be stepped up so the crew members won’t inhale any dust particles.”

Bearing the weight

NASA

One challenge which makes designing for Mars different from designing for the ISS, for example, is the gravity involved. The ISS is a microgravity environment and therefore requires little use of the legs as the astronauts propel themselves around using their hands and arms. “The only thing we really use the feet and legs for in the ISS environment is for foot restraints at worksites to lock you in place,” Davis explains. “It’s very different when we’re looking at a partial gravity environment like the moon and one day Mars.”

On a partial gravity environment like Mars, the spacesuit engineers need to strike a balance between a suit that protects the astronauts and fulfills all the functions it needs to, and one which is not too heavy and cumbersome to wear. Mars has a gravity just over a third of Earth’s, while the moon’s gravity is around one-sixth. That means the suits feel heavier on Mars than they would in other environments — and the human body will change.

ESA / GCP / UPV / EHU Bilbao

Current complete spacesuits including life support systems weigh around 300 pounds, and although the next-generation suits are still having their weight finalized, they’ll probably be similar. On the moon, that means carrying the equivalent of around 50 pounds, but on Mars, it’ll be around 100 pounds.

“Although it doesn’t quite feel like 100 pounds when you’re walking around, as the suit will hold some its own weight when pressurized, especially when you’re standing upright,” Davis said. “The legs almost act like springs, so you don’t feel the full weight when you’re moving around.”

The engineers also find ways to help the astronauts bear the weight, such as using waist straps similar to those found on hiking backpacks, that distribute weight around the hips and shoulders.

Testing materials here on Earth

To test how a suit would feel in the lighter gravity of space environments, NASA uses a system called the Active Response Gravity Offload System, or ARGOS. This consists of a harness that is hooked up to a test subject in a spacesuit, and a series of pulleys that can have weights attached to offload the subject’s mass. The result is a system that can re-create the gravity environments of the moon or Mars, letting test subjects jump high in the air like they could on the moon, or experience the microgravity of the ISS and learn to move around using their hands.

Active Response Gravity Offload System (ARGOS) Montage

“We have big buckets of sand that they get in and out of,” Davis explained. “And treadmills that can do different degrees of tilting. So we simulate what it’s like to do a spacewalk similar to what they’d have to do on the lunar surface. They take samples and use the tools that we develop. It’s not perfect — the tools that they use aren’t offloaded, and the system itself does give a little bit of bias — but it gives us a better idea of what the suit would look like in practice.”

They have ways to test out materials for space environments as well, performing what are called “ground tests,” in which the target environment is recreated as faithfully as possible here on Earth. For testing gear for Mars, that involves building a chamber in which the pressure, UV radiation, and atmosphere of the planet can be simulated, along with variations in temperature and potentially recreating the massive dust storms that the planet experiences as well.

Active Response Gravity Offload System (ARGOS) NASA

The trouble with trying to re-create Martian dust, however, is that we don’t know exactly what it’s composed of and how it differs across the planet. Luther Beegle, a NASA scientist who has worked on creating “Mars simulant,” as the faux-Martian dust is known, describes the problem: “It simulates one portion of the material we find on the surface of Mars. There’s always something that you don’t know is there. We don’t know exactly 100% what all the chemical reactions of these dust particles are.”

Active Response Gravity Offload System (ARGOS )

The dust on Mars isn’t uniform across the entire planet either, which adds a further issue. “We made a simulant which recreates the bulk chemical and physical properties of wind-blown dust,” Beegle said. “It simulated around 80 to 85% of what that material was. But depending on where you are on Mars, different regions have different localized mineralogy.”

So although on-ground tests are an invaluable way to test new hardware like spacesuits, to be entirely confident that materials can withstand harsh space missions, you need to test them in the real environments where they will be used.

Testing out materials on another planet

To test out spacesuit materials on Mars, NASA scientists have come up with an ingenious plan. The Perseverance rover, which will explore the planet and is being launched this summer, will carry a variety of scientific instruments, including a spectrometry instrument called SHERLOC (the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals). And that instrument requires a set of calibration targets of known materials.

This image of the Perseverance Mars rover was taken at NASA's Kennedy Space Center on April 7, 2020, during a test of the vehicle's mass properties.
The Perseverance Mars rover seen at NASA’s Kennedy Space Center on April 7, 2020, during a test of the vehicle’s mass properties. NASA/JPL-Caltech

But instead of sending the usual calibration materials of pure minerals, like those used on Curiosity’s SuperCam instrument, SHERLOC’s scientists have teamed up with the spacesuit designers to use spacesuit materials for calibration. That way, the materials can be tested in situ on Mars without adding any extra unnecessary weight or space to the already-packed rover.

Beegle is the principal investigator for SHERLOC as well, and he described how the experiment came about: “We got creative. And we found fabric we can do both imaging and elemental targeting with. It really added a second layer to what we’re doing. We got Johnson [Space Center, where spacesuits are designed] involved too, and we like to be one big NASA family. The more we thought about it, the more excited we got.”

SHERLOC will perform its calibrations using a board containing five different samples of materials in 2cm × 2cm squares: Polycarbonate which is used in face shields, plus Vectran, Ortho-Fabric, Teflon, and a coated Teflon, which are used in the spacesuits.

“About every three to six months, we’re going to re-calibrate the instrument, which means we’ll be able to look at our samples again,” Beegle explained. “What we’re looking for is degradation. We’re going to check that the fabric itself stays intact using visible imaging and spectra.” For example, one of the fabrics is woven, and if its weave begins to break down, that would be visible to SHERLOC’s instruments. “We could detect that with microscopic imaging. We could see whether the weaves were modified or degrading.”

Hopefully, all of the samples stand up to the environment and don’t degrade at all over the two to six-year experiment. But if degradation does occur, the spacesuit team can perform more ground tests to identify the cause, to ensure that spacesuits will continue to function in the Martian environment in the long term.

The future of spacesuit design

As well as expanding the current xEMU design, Davis is also part of a team working on new technologies in early stages of development — looking at the sort of speculative ideas that could be used in future designs. One such concept she and others are working on is an Augmented Reality system where a display on a helmet could show information as astronauts work.

NASA

“We’re hoping that one day we can have some kind of display that the crew members can use, especially for working through procedures,” she explained. “It could display things like procedures, or camera views. And maybe cautions or warning systems, or your EVA time, your oxygen levels, all the information that would be useful to have handy.”

The team has considered different technologies to achieve this effect and is starting work on a prototype using a projection system. This would be particularly valuable on Mars, where there is a communication delay of at least seven minutes in each direction between there and Earth.

Currently, when astronauts are performing complex tasks on a location like the ISS, ground control walks them through each step via audio instructions. But the communication delay with Mars would make this time-consuming and inefficient. The idea is that an AR display on the helmets could show step-by-step instructions and allow the astronauts to work autonomously without having to wait for instructions from Earth.

First the moon, then Mars

Exactly how NASA’s current spacesuit design will evolve for future Mars missions depends first on how it works out on upcoming missions to the moon. NASA aims to send astronauts back to the the moon by 2024, and when they go, they’ll be wearing the xEMU suit that Davis helped design. And from there, it’s on to Mars.

Topics
Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Why the Jezero Crater is the most exciting place on Mars
Mar's Jezero Crater

When NASA's Perseverance rover lands on Mars this week, it'll begin one of the most ambitious scientific endeavors imaginable: Looking for evidence that life once evolved on an alien world. Scientists are pretty certain that there's nothing living on Mars now, but they think there could have been at one point in the planet's history – and the rover is visiting a site called the Jezero Crater to learn more.
You may have heard that Perseverance is searching for signs of ancient life, and you might even have heard that it's heading to Jezero because that's a prime target in that search.
But why are scientists so interested in going to this one particular location? How do you guess where life might have evolved millions or billions of years ago, on an alien planet? What makes Jezero so special?
We spoke to an expert in Mars geology, Katie Stack Morgan of NASA's Jet Propulsion Laboratory, to find out.

The hunt for life is on
The headline draw of the Jezero Crater is the nearby delta deposit. Millions of years ago, Mars had plentiful liquid water on its surface, and the landscape was dotted with rivers and valleys. That meant that craters like Jezero filled up with water, and when water flowed into the crater from a river, it formed a delta comparable to the Mississippi Delta on Earth.
Deltas are incredible targets for searching for signs of life, both because they provide a comfortable environment for life to emerge and because they concentrate organic matter in a way that makes it easier to detect.
However, like basically every aspect of Mars exploration, it's not quite as simple as finding a structure that looks like a delta and hunting through that. That's because it's hard to tell the history of water on a planet that is now so dry.
Perseverance aims to land right in front of this delta to begin searching for signs of life.

Read more
7 minutes of terror: A breakdown of Perseverance’s insane Mars landing sequence
An illustration of NASA’s Perseverance rover as it fires up its descent stage engines

Imagine: You've designed and built a billion-dollar rover to investigate another planet and launched it into space. It's made its way through the darkness on a seven-month journey to Mars, and it's finally arrived at its destination. Now, you just have to get it to the surface and you can start exploring.
The landing isn't going to be easy, though. Your craft will be traveling at over 12,000 miles per hour when it hits the martian atmosphere – and that atmosphere is so thin that parachutes work differently there than they do on Earth. Fluctuations in wind speeds and the amount of dust in the atmosphere are extremely hard to predict and can affect the landing. And you need to set down your 2,200-pound rover gently enough not to break anything.
Oh, and on top of all that, Mars is so far away that there's a communication delay of up to 20 minutes, so you can't control anything in real time. You have to program the craft to land itself, and once descent begins, you can't do anything to help it. You can only sit and watch as your precious spacecraft goes hurtling toward the planet's surface, in a period that engineers call the “seven minutes of terror”.
Overseeing this nail-biting horror is the real-life job of Gregorio Villar, a systems engineer on the the Entry, Descent, and Landing (EDL) team for the Perseverance rover at NASA's Jet Propulsion Laboratory (JPL). He told us about what it takes to land a rover on Mars.

The journey to Mars
The rover travels to Mars safely cocooned in a spacecraft, in a segment of the mission called the cruise. During this journey, engineers keep watch on the spacecraft and make small adjustments to its flight path to ensure it's going in the right direction.
As the spacecraft approaches Mars, the engineers have their final opportunities to make any tweaks to its speed and direction. One of the most important tasks for the engineers before landing begins is for them to inform the spacecraft of its position relative to the planet as accurately as possible, so that the landing process can start in exactly the right place.

Read more
2020 was full of giant leaps for mankind’s return to crewed space missions
spacexs historic crew dragon mission in pictures interior

Mankind hasn't left Earth since the Apollo 17 mission in 1972. We have maintained a continuous presence on the International Space Station for two decades, which is its own incredible achievement, but we haven't gone beyond low Earth orbit and onto to the moon or further into our solar system for nearly 50 years.

But this year, we made big strides in returning to crewed space missions and exploring beyond our planet. Leaving the Earth is no easy feat, but we're getting there. Here's a quick recap of the small steps and giant leaps that mankind made in 2020, and that will help us usher in a new era of crewed space exploration in the near future.
8. India joins crewed space exploration efforts
Currently, the only nations with active human spaceflight programs are Russia, the U.S., and China. But that looks set to change, with India ramping up its spaceflight program this year. The Indian Space Research Organisation (IRSO) had wanted to test its upcoming Gaganyaan crew vehicle as early as next year, with aims to carry its first astronauts on an orbital test flight in 2022. However, delays of one year are expected to this date due to the coronavirus pandemic.

Read more